Abstract
A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric fla-voenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.
Original language | American English |
---|---|
Pages (from-to) | 4688-4701 |
Number of pages | 14 |
Journal | Journal of Biological Chemistry |
Volume | 293 |
Issue number | 13 |
DOIs | |
State | Published - 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Society for Biochemistry and Molecular Biology Inc. All Rights Reserved.
NREL Publication Number
- NREL/JA-2700-70488
Keywords
- circular dichroism
- electron bifurcation
- electron transfer
- electron transfer flavorprotein
- ETF
- FixAB
- flavin
- flavorprotein
- nitrogenase
- reduction midpoint potential