Abstract
This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reduction and energy saving, as well as working productivity improvements, can be achieved.
Original language | American English |
---|---|
Number of pages | 6 |
DOIs | |
State | Published - 17 Nov 2016 |
Event | 48th North American Power Symposium, NAPS 2016 - Denver, United States Duration: 18 Sep 2016 → 20 Sep 2016 |
Conference
Conference | 48th North American Power Symposium, NAPS 2016 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 18/09/16 → 20/09/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5D00-67826
Keywords
- artificial systems
- distribution locational marginal real-time price
- feedback
- human comfort
- numeric experiments
- parallel intelligence and control
- Smart building
- social energy
- working performance