Abstract
We consider the problem of controlling the frequency response of weakly-coupled multi-machine multi-inverter low-inertia power systems via grid-forming inverter-based resources (IBRs). In contrast to existing methods, our approach relies on dividing the larger system into multiple strongly-coupled subsystems, without ignoring either the underlying network or approximating the subsystem response as an aggregate harmonic mean model. Rather, through a structured clustering and recursive dynamic shaping approach, the frequency response of the overall system to load perturbations is shaped appropriately. We demonstrate the proposed approach for a three-node triangular configuration and a small-scale radial network. Furthermore, previous synchronization analysis for heterogeneous systems requires the machines to satisfy certain proportionality property. In our approach, the effective transfer functions for each cluster can be tuned by the IBRs to satisfy such property, enabling us to apply the shaping control to systems with a wider range of heterogeneous machines.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 2024 |
Event | 2024 IEEE Power & Energy Society General Meeting - Seattle, Washington Duration: 21 Jul 2024 → 25 Jul 2024 |
Conference
Conference | 2024 IEEE Power & Energy Society General Meeting |
---|---|
City | Seattle, Washington |
Period | 21/07/24 → 25/07/24 |
Bibliographical note
See NREL/CP-5D00-88101 for preprintNREL Publication Number
- NREL/CP-5D00-92005
Keywords
- frequency-shaping control
- grid-forming devices
- inverter-based resources
- weakly-coupled networks