Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

Justin Johnson, Steven Christensen, Devin Granger, John Anthony, Natalie Pace, Dylan Arias

Research output: Contribution to journalArticlepeer-review

43 Scopus Citations


We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

Original languageAmerican English
Pages (from-to)3004-3013
Number of pages10
JournalChemical Science
Issue number11
StatePublished - 2018

Bibliographical note

Publisher Copyright:
© 2018 The Royal Society of Chemistry.

NREL Publication Number

  • NREL/JA-5900-70661


  • acene monolayers
  • singlet fission
  • solar-photochemistry
  • titanium dioxide


Dive into the research topics of 'Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide'. Together they form a unique fingerprint.

Cite this