TY - JOUR
T1 - Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells
AU - Zhu, Kai
AU - Yang, Mengjin
AU - Reid, Obadiah
AU - Yu, Yue
AU - Song, Zhaoning
AU - Zhao, Dewei
AU - Wang, Changlei
AU - Li, Liwei
AU - Meng, Yuan
AU - Guo, Ted
AU - Yan, Yanfa
AU - Kim, Donghoe
AU - Li, Zhen
AU - Kim, Donghoe
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018
Y1 - 2018
N2 - A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ∼1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.
AB - A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ∼1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.
KW - Non-stoichiometric chemistry
KW - Tandem solar cell
KW - Wide bandgap perovskite
UR - http://www.scopus.com/inward/record.url?scp=85042676490&partnerID=8YFLogxK
U2 - 10.1016/j.mtener.2017.10.001
DO - 10.1016/j.mtener.2017.10.001
M3 - Article
AN - SCOPUS:85042676490
SN - 2468-6069
VL - 7
SP - 232
EP - 238
JO - Materials Today Energy
JF - Materials Today Energy
ER -