Abstract
Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Results: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed for pelleted and ground stover (6.35 and 2 mm) formats. Monomeric xylose yields were significantly higher for pellets (∼60%) than for ground formats (∼38%). Pellets achieved approximately 84% of theoretical ethanol yield; ground stover formats had similar profiles, reaching approximately 68% theoretical ethanol yield. Pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro); feedstock reactivity increased slightly following combined pretreatment and enzymatic hydrolysis for three of five severities tested. Conclusion: Pelleting did not render corn stover more recalcitrant to dilute-acid pretreatment under low- or high-solids conditions, and even enhanced ethanol yields.
Original language | American English |
---|---|
Pages (from-to) | 271-284 |
Number of pages | 14 |
Journal | Biofuels |
Volume | 4 |
Issue number | 3 |
DOIs | |
State | Published - 2013 |
NREL Publication Number
- NREL/JA-5100-57878