Abstract
Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.
Original language | American English |
---|---|
Number of pages | 18 |
DOIs | |
State | Published - 2014 |
Event | 32nd ASME Wind Energy Symposium - SciTech Forum and Exposition 2014 - National Harbor, MD, United States Duration: 13 Jan 2014 → 17 Jan 2014 |
Conference
Conference | 32nd ASME Wind Energy Symposium - SciTech Forum and Exposition 2014 |
---|---|
Country/Territory | United States |
City | National Harbor, MD |
Period | 13/01/14 → 17/01/14 |
NREL Publication Number
- NREL/CP-5000-60966
Keywords
- computer aided engineering (CAE)
- fast
- NREL
- offshore wind turbines