Effects of Variable Speed and Drive Train Component Efficiencies on Wind Turbine Energy Capture

    Research output: Contribution to conferencePaper

    Abstract

    A wind turbine rotor achieves optimal aerodynamic efficiency at a single tip-speed ratio (TSR). To maintain that optimal TSR and maximize energy capture in the stochastic wind environment, it is necessary to employ variable-speed operation. Conventional constant-speed wind turbines have, in the past, been converted into variable-speed turbines by attaching power electronics to the conventionalinduction generator and gearbox drive train. Such turbines have shown marginal, if any, improvement in energy capture over their constant-speed counterparts. These discrepancies have been shown to be the result of drive train components that are not optimized for variable-speed operation. Traditional drive trains and power electronic converters are designed to achieve maximum efficiency at fullload and speed. However, the main energy producing winds operate the turbine at light load for long periods of time. Because of this, significant losses to efficiency occur. This investigation employs a quasi-static model to demonstrate the dramatic effect that component efficiency curves can have an overall annual energy capture.
    Original languageAmerican English
    Pages264-270
    Number of pages7
    StatePublished - 1997
    Event1997 ASME Wind Energy Symposium Technical 35th AIAA Aerospace Sciences Meeting and Exhibit - Reno, Nevada
    Duration: 6 Jan 19979 Jan 1997

    Conference

    Conference1997 ASME Wind Energy Symposium Technical 35th AIAA Aerospace Sciences Meeting and Exhibit
    CityReno, Nevada
    Period6/01/979/01/97

    NREL Publication Number

    • NREL/CP-23286

    Fingerprint

    Dive into the research topics of 'Effects of Variable Speed and Drive Train Component Efficiencies on Wind Turbine Energy Capture'. Together they form a unique fingerprint.

    Cite this