Abstract
To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber - acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.
Original language | American English |
---|---|
Pages (from-to) | 1547-1570 |
Number of pages | 24 |
Journal | Applied Composite Materials |
Volume | 31 |
Issue number | 5 |
DOIs | |
State | Published - 2024 |
NREL Publication Number
- NREL/JA-5000-90795
Keywords
- adhesion
- debonding
- delamination
- glass fibers