TY - JOUR
T1 - Energy Generation from the CO Oxidation-Hydrogen Production Pathway in Rubrivivax Gelatinosus
AU - Maness, Pin Ching
AU - Huang, Jie
AU - Smolinski, Sharon
AU - Tek, Vekalet
AU - Vanzin, Gary
PY - 2005
Y1 - 2005
N2 - When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O → CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This observation suggests that the CO oxidation reaction yields energy. Indeed, new ATP synthesis was detected in darkness following CO additions to the gas phase of the culture, in contrast to the case for a control that received an inert gas such as argon. When the CO-to-H2 activity was determined in the presence of the electron transport uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), the rate of H2 production from CO oxidation was enhanced nearly 40% compared to that of the control. Upon the addition of the ATP synthase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), we observed an inhibition of H2 production from CO oxidation which could be reversed upon the addition of CCCP. Collectively, these data strongly suggest that the CO-to-H2 reaction yields ATP driven by a transmembrane proton gradient, but the detailed mechanism of this reaction is not yet known. These findings encourage additional research aimed at long-term H2 production from gas streams containing CO.
AB - When incubated in the presence of CO gas, Rubrivivax gelatinosus CBS induces a CO oxidation-H2 production pathway according to the stoichiometry CO + H2O → CO2 + H2. Once induced, this pathway proceeds equally well in both light and darkness. When light is not present, CO can serve as the sole carbon source, supporting cell growth anaerobically with a cell doubling time of nearly 2 days. This observation suggests that the CO oxidation reaction yields energy. Indeed, new ATP synthesis was detected in darkness following CO additions to the gas phase of the culture, in contrast to the case for a control that received an inert gas such as argon. When the CO-to-H2 activity was determined in the presence of the electron transport uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), the rate of H2 production from CO oxidation was enhanced nearly 40% compared to that of the control. Upon the addition of the ATP synthase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), we observed an inhibition of H2 production from CO oxidation which could be reversed upon the addition of CCCP. Collectively, these data strongly suggest that the CO-to-H2 reaction yields ATP driven by a transmembrane proton gradient, but the detailed mechanism of this reaction is not yet known. These findings encourage additional research aimed at long-term H2 production from gas streams containing CO.
UR - http://www.scopus.com/inward/record.url?scp=20444377225&partnerID=8YFLogxK
U2 - 10.1128/AEM.71.6.2870-2874.2005
DO - 10.1128/AEM.71.6.2870-2874.2005
M3 - Article
C2 - 15932979
AN - SCOPUS:20444377225
SN - 0099-2240
VL - 71
SP - 2870
EP - 2874
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 6
ER -