Abstract
Enzymatic depolymerization of poly(ethylene terephthalate) (PET) has emerged as a promising approach for polyester recycling, and, to date, many natural and engineered PET hydrolase enzymes have been reported. For industrial use, PET hydrolases must achieve high depolymerization extent and exhibit excellent thermostability. Here, we engineered a natural PET hydrolase, Polyester Hydrolase Leipzig #7 (PHL7), through rational design and directed evolution using a high-throughput screening platform. Four new enzymes were engineered with enhanced properties compared with the parent enzyme, wild-type PHL7 (PHL7-WT), and other benchmark PET hydrolases, under the tested conditions. In bioreactors, the exemplary engineered enzyme, PHL7-Jemez, exhibited improved ability to depolymerize amorphous PET film compared with PHL7-WT at 2.9% and 20% substrate loadings, with 37% and 270% higher hydrolysis, respectively, after 48 h. This study develops several state-of-the-art PET hydrolases and demonstrates a directed evolution platform to engineer high-performance enzymes, which can accelerate enzyme discovery toward improved biocatalytic recycling.
Original language | American English |
---|---|
Journal | Chem Catalysis |
DOIs | |
State | Published - 2025 |
NREL Publication Number
- NREL/JA-2A00-91746
Keywords
- directed evolution
- enzymatic plastic degradation
- high-throughput screening
- PET hydrolase
- plastic recycling
- poly(ethylene terephthalate) (PET)
- protein engineering
- split GFP