Abstract
We investigate the feasibility of introducing synthetic turbulence into finite-domain large-eddy simulations (LES) of the wind plant operating environment. This effort is motivated by the need for a robust mesoscale-to-microscale coupling strategy in which a microscale (wind plant) simulation is driven by mesoscale data without any resolved microscale turbulence. A neutrally stratified atmospheric boundary layer was simulated in an LES with 10-m grid spacing. We show how such a fully developed turbulence field may be reproduced with spectral enrichment starting from an under-resolved coarse LES field (with 20-m and 40-m grid spacing). The velocity spectra of the under-resolved fields are enriched by superimposing a fluctuating velocity field calculated by two turbulence simulators: TurbSim and Gabor Kinematic Simulation. Both forms of enrichment accurately simulated the autospectra of all three velocity components at high wavenumbers, with agreement between the enriched fields and the full-resolution LES observed at 400 m from the inflow boundary. In contrast, the spectra of the unenriched fields reached the same fully developed state at four times the downstream distance.
Original language | American English |
---|---|
Article number | Article No. 072054 |
Number of pages | 10 |
Journal | Journal of Physics: Conference Series |
Volume | 1037 |
Issue number | 7 |
DOIs | |
State | Published - 19 Jun 2018 |
Event | 7th Science of Making Torque from Wind, TORQUE 2018 - Milan, Italy Duration: 20 Jun 2018 → 22 Jun 2018 |
Bibliographical note
Publisher Copyright:© Published under licence by IOP Publishing Ltd.
NREL Publication Number
- NREL/JA-5000-71378
Keywords
- atmospheric boundary layer
- kinematics
- large eddy simulation
- torque
- turbulence
- velocity