Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines

Andrew Bartling, Pahola Benavides, Steven Phillips, Troy Hawkins, Avantika Singh, Matthew Wiatrowski, Eric Tan, Christopher Kinchin, Longwen Ou, Hao Cai, Mary Biddy, Ling Tao, Andrew Young, Kathleen Brown, Shuyun Li, Yunhua Zhu, Lesley Snowden-Swan, Chirag Mevawala, Daniel Gaspar

Research output: Contribution to journalArticlepeer-review

13 Scopus Citations

Abstract

Economic and environmental favorability are vital considerations for the large-scale development and deployment of sustainable fuels. Here, we have conducted economic and sustainability analyses of pathways for producing bioblendstocks optimized for improved combustion for mixing-controlled compression ignition (MCCI) engines. We assessed 25 pathways for the production of target fuels from renewable feedstocks and conducted techno-economic analysis (TEA) and life cycle analysis (LCA) to determine which bioblendstock candidates are likely to be viable given a slate of 19 metrics evaluating technology readiness, economic viability, and environmental impacts ranking each metric as either favorable, neutral, unfavorable, or unknown across a range of screening criteria. Among the results, we found that the economic metrics were largely favorable for most of the bioblendstocks. Of the near-term baseline cases, eight pathways offered the potential of a minimum fuel selling price (MFSP) of less than $5/gallon of gasoline equivalent (GGE). In comparison, under future target case scenarios, there is potential for seven pathways to reduce their fuel selling price to less than $4/GGE. Biochemically-based pathways struggled to achieve favorable target case MFSP under the processing approach taken here, but further economic improvements could be achieved when lignin valorization is included. Most of the conversion technologies were determined to be robust in that they would be minimally affected by the feedstock specifications and variations. However, given the early stage of development for most of the pathways, blending behavior and testing for regulatory limits are key data gaps as knowledge of how many of these bioblendstocks will perform when blended with existing fuels and how much can be added while still meeting fuel property specifications is still being assessed. Twelve pathways showed significant reductions in life cycle greenhouse gas (GHG) emissions greater than 60%, and 15 showed favorable fossil energy use reductions compared to conventional diesel fuel. Energy-intensive processes and the use of GHG-intensive chemicals such as sodium hydroxide contribute significantly to GHG emissions. Results from these analyses enable researchers and industry to assess the potential viability of MCCI bioblendstocks.

Original languageAmerican English
Pages (from-to)6699-6712
Number of pages14
JournalACS Sustainable Chemistry and Engineering
Volume10
Issue number20
DOIs
StatePublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society.

NREL Publication Number

  • NREL/JA-5100-81843

Keywords

  • biofuels
  • life cycle analysis
  • renewable diesel
  • techno-economic analysis

Fingerprint

Dive into the research topics of 'Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines'. Together they form a unique fingerprint.

Cite this