TY - JOUR
T1 - Evaluating Performance of Different Generative Adversarial Networks for Large-Scale Building Power Demand Prediction
T2 - Article No. 112247
AU - Ye, Yunyang
AU - Strong, Matthew
AU - Lou, Yingli
AU - Faulkner, Cary
AU - Zuo, Wangda
AU - Upadhyaya, Satish
PY - 2022
Y1 - 2022
N2 - As an unsupervised-learning data-driven model, Generative Adversarial Networks (GANs) have recently attracted a lot of attention for various applications. There is potential to apply GANs for large-scale building power demand prediction, which is needed for power grid operation. However, there are many GAN variations and it is unclear which GAN is suitable for this application. To answer this question, this paper identifies five promising GANs (Original GAN, cGAN, SGAN, InfoGAN, and ACGAN) and evaluates their performance for predicting building power demand at a large scale. Physics-based building energy models are developed to generate training and reference data. A new evaluation indicator that combines accuracy and reproducibility is proposed to evaluate the performance of different GANs in predicting building power demand. The results show that SGAN and InfoGAN are not suitable because they cannot control the number of generated building samples for different building types. The prediction performance among the Original GAN, cGAN, and ACGAN can vary depending on training sample sizes and number of building types. If the training sample size is sufficiently large, Original GAN and cGAN can predict building power demand more accurately than ACGAN with the same number of samples. If training samples are limited, Original GAN provides better accuracy than cGAN and ACGAN. When the number of building types increase, the prediction accuracy increases for cGAN, decreases for ACGAN, and remains the same for Original GAN. As a result, cGAN and Original GAN are recommended for large-scale building power demand prediction.
AB - As an unsupervised-learning data-driven model, Generative Adversarial Networks (GANs) have recently attracted a lot of attention for various applications. There is potential to apply GANs for large-scale building power demand prediction, which is needed for power grid operation. However, there are many GAN variations and it is unclear which GAN is suitable for this application. To answer this question, this paper identifies five promising GANs (Original GAN, cGAN, SGAN, InfoGAN, and ACGAN) and evaluates their performance for predicting building power demand at a large scale. Physics-based building energy models are developed to generate training and reference data. A new evaluation indicator that combines accuracy and reproducibility is proposed to evaluate the performance of different GANs in predicting building power demand. The results show that SGAN and InfoGAN are not suitable because they cannot control the number of generated building samples for different building types. The prediction performance among the Original GAN, cGAN, and ACGAN can vary depending on training sample sizes and number of building types. If the training sample size is sufficiently large, Original GAN and cGAN can predict building power demand more accurately than ACGAN with the same number of samples. If training samples are limited, Original GAN provides better accuracy than cGAN and ACGAN. When the number of building types increase, the prediction accuracy increases for cGAN, decreases for ACGAN, and remains the same for Original GAN. As a result, cGAN and Original GAN are recommended for large-scale building power demand prediction.
KW - building
KW - data-driven model
KW - generative adversarial networks
KW - power demand prediction
U2 - 10.1016/j.enbuild.2022.112247
DO - 10.1016/j.enbuild.2022.112247
M3 - Article
SN - 0378-7788
VL - 269
JO - Energy and Buildings
JF - Energy and Buildings
ER -