Evaluation of Lipid Extractability After Flash Hydrolysis of Algae

Tao Dong, Ali Teymouri, Kameron Adams, Sandeep Kumara

Research output: Contribution to journalArticlepeer-review

22 Scopus Citations

Abstract

Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) at 280 °C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 ± 0.8 vs. 10.7 ± 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 °C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the biocrude yields from the BI and its quality was significantly enhanced post FH than that of raw algae. The FH process was proven to be a viable option for lipid extraction by increasing the extent of recovery and decreasing the extraction time. Its integration with HTL notably impact the biocrude yields and characteristics for fuel production.

Original languageAmerican English
Pages (from-to)23-31
Number of pages9
JournalFuel
Volume224
DOIs
StatePublished - 15 Jul 2018

Bibliographical note

Publisher Copyright:
© 2018

NREL Publication Number

  • NREL/JA-5100-71235

Keywords

  • Flash hydrolysis
  • Hydrothermal liquefaction
  • Kinetics study
  • Lipid analysis
  • Microalgae
  • Oil extraction

Fingerprint

Dive into the research topics of 'Evaluation of Lipid Extractability After Flash Hydrolysis of Algae'. Together they form a unique fingerprint.

Cite this