Abstract
Integration of large numbers of distributed photovoltaic (PV) systems in electric distribution circuits often requires advanced functions (e.g. volt-VAR, frequency-Watt etc.). However, significant concerns have been raised about potential for PV inverters with such controls to interact with one another in a way that could cause grid instability. The lack of standardized inverter models makes it hard to simulate such transient interactions in software. Similarly it is very hard to test these dynamic inverter interactions in the laboratory. In this paper, unique Power Hardware-in-the-Loop (PHIL) techniques are presented to experimentally test for interactions of multiple PV inverters connected to multiple points-of-common-coupling (PCCs) with grid impedances between them. Sample test results are provided from simulation-only scenarios and PHIL testing. Though simulation results indicated possible harmful interactions between inverters' volt-VAR controllers; no such interactions were found in the limited hardware testing.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 30 Sep 2015 |
Event | 2015 IEEE Power and Energy Society General Meeting - Denver, Colorado Duration: 26 Jul 2015 → 30 Jul 2015 |
Conference
Conference | 2015 IEEE Power and Energy Society General Meeting |
---|---|
City | Denver, Colorado |
Period | 26/07/15 → 30/07/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
NREL Publication Number
- NREL/CP-5D00-63795
Keywords
- interactions
- inverters
- Photovoltaic
- power hardware-in-the-loop
- volt-VAR control