Evaluation of Nanostructured ..beta..-Mn2V2O7 Thin Films as Photoanodes for Photoelectrochemical Water Oxidation

Yash Gargasya, Melissa Gish, Vineet Nair, Justin Johnson, Matt Law

Research output: Contribution to journalArticlepeer-review

5 Scopus Citations


β-Mn2V2O7 (β-MVO) was recently reported to be a promising candidate for photoelectrochemical (PEC) water splitting, with a suitable band gap and band edge positions and reasonable stability and photoactivity in preliminary tests in alkaline solution. Here, we present an in-depth evaluation of the PEC performance and stability of phase-pure nanostructured β-Mn2V2O7 films made by calcination of a spin-cast molecular ink. We show that β-Mn2V2O7 dissolves in pure water, corrodes in aqueous electrolytes at pH 7 and 9, and converts to amorphous manganese (hydr)oxides within minutes at pH 13. Our β-Mn2V2O7 films yielded only miniscule photocurrents (∼μA cm-2) for the oxidation of iodide, sulfite, or water and the reduction of iodate or water in borate- and phosphate-buffered electrolytes at pH 7 and 9, the oxidation of [Fe(CN)6]4- or water at pH 13, and the oxidation of bromide in acetonitrile, regardless of film calcination temperature and time, film thickness, and illumination geometry. Minimal photoactivity was observed even in electrolytes in which film degradation was insignificant over the duration of the PEC tests. Ultrafast transient absorption spectroscopy shows that the poor photoactivity is likely the result of fast hole trapping and recombination at the MVO surface that leaves few free charge carriers beyond the picosecond time scale. Given its poor charge transport/extraction and chemical stability, native nanostructured β-Mn2V2O7 is ineffective for solar water splitting and future research on this material should focus on the development of superior syntheses and film morphologies, MVO alloys, heterostructures, and surface coatings to alleviate recombination and boost operational stability. This work underscores the importance of careful follow-up studies of materials identified as "hits"in combinatorial materials discovery campaigns.

Original languageAmerican English
Pages (from-to)7743-7754
Number of pages12
JournalChemistry of Materials
Issue number19
StatePublished - 2021

Bibliographical note

Publisher Copyright:
© 2021 Chemistry of Materials. All Rights Reserved.

NREL Publication Number

  • NREL/JA-5900-79868


  • manganese vanadate
  • photoelectrochemistry
  • solar-photochemistry
  • transient absorption
  • water splitting


Dive into the research topics of 'Evaluation of Nanostructured ..beta..-Mn2V2O7 Thin Films as Photoanodes for Photoelectrochemical Water Oxidation'. Together they form a unique fingerprint.

Cite this