Evaluation of the Passive Cooling Potential of Thermal Mass Inherent in Medium to Large Commercial Buildings: Article No. 04021007

John Nelson, Gregor Henze

Research output: Contribution to journalArticlepeer-review

1 Scopus Citations

Abstract

Typical commercial construction inherently contains large surface areas of relatively thin mass located in the floor slabs. This research asks how effective this mass could be for passive cooling, relative to other mass depths, if it were to be exposed and used as thermal mass. Although much of the rich literature on thermal mass has been conducted with far greater mass depths, a more limited amount of research suggests that because the surface heat transfer rate is limited, the focus should be on the surface area of exposed mass, not its depth. This presents an opportunity for more buildings to behave more thermally massively, if the mass inherent in typical floor slabs contains utility, particularly over diurnal cycles. In all climates analyzed, it was found that there is a pronounced shoulder where energy savings from passive cooling of increasing mass depths was steep until roughly 7.5–10 cm, and beyond this point the achieved energy savings diminished rapidly. When considering the embodied energy of concrete, the incremental benefit of added mass beyond a typical topping slab of 10 cm does not justify the incremental embodied energy cost from a total energy standpoint alone.
Original languageAmerican English
Number of pages14
JournalJournal of Architectural Engineering
Volume27
Issue number2
DOIs
StatePublished - 2021

NREL Publication Number

  • NREL/JA-5500-79654

Keywords

  • commercial buildings
  • energy efficiency
  • thermal properties

Fingerprint

Dive into the research topics of 'Evaluation of the Passive Cooling Potential of Thermal Mass Inherent in Medium to Large Commercial Buildings: Article No. 04021007'. Together they form a unique fingerprint.

Cite this