ExaWind: A Multifidelity Modeling and Simulation Environment for Wind Energy

Research output: Contribution to journalArticlepeer-review

79 Scopus Citations

Abstract

We introduce the open-source ExaWind modeling and simulation environment for wind energy. The primary physics codes of ExaWind are Nalu-Wind and OpenFAST. Nalu-Wind is a wind-focused computational fluid dynamics (CFD) code that is coupled to the whole-turbine simulation code OpenFAST. The ExaWind environment was created under U.S. Department of Energy funding to achieve the highest-fidelity simulations of wind turbines and wind farms to date, with the goal of enabling disruptive changes to turbine and plant design and operation. Innovation will be gleaned through better understanding of the complex flow dynamics in wind farms, including wake evolution and the impact of wakes on downstream turbines and turbulent flow from complex terrain. High-fidelity predictive simulations employ hybrid turbulence models, geometry/boundary-layer-resolving CFD meshes, atmospheric turbulence, nonlinear structural dynamics, and fluid-structure interaction. While there is an emphasis on very high-fidelity simulations (e.g., blade resolved with full fluid-structure coupling), the ExaWind environment supports lower-fidelity modeling capabilities including actuator-line and -disk methods. Important in the development of ExaWind codes is that the codes scale well on today's largest petascale supercomputers and on the next-generation platforms that will enable exascale computing.

Original languageAmerican English
Article numberArticle No. 012071
Number of pages13
JournalJournal of Physics: Conference Series
Volume1452
Issue number1
DOIs
StatePublished - 3 Mar 2020
EventNorth American Wind Energy Academy, NAWEA 2019 and the International Conference on Future Technologies in Wind Energy 2019, WindTech 2019 - Amherst, United States
Duration: 14 Oct 201916 Oct 2019

Bibliographical note

Publisher Copyright:
© 2020 IOP Publishing Ltd. All rights reserved.

NREL Publication Number

  • NREL/JA-5000-75092

Keywords

  • ExaWind
  • modeling
  • simulation

Fingerprint

Dive into the research topics of 'ExaWind: A Multifidelity Modeling and Simulation Environment for Wind Energy'. Together they form a unique fingerprint.

Cite this