Abstract
The formation of soot precursors during combustion of three positional isomers of methylcyclohexene was investigated in flow reactor experiments and through density functional theory simulations. As evidenced by a recently published structure-property model, the sooting tendencies of these compounds differ from those of structurally similar molecules - suggesting new or unusual reaction chemistry. It was demonstrated that 1-methyl-1-cyclohexene and 4-methyl-1-cyclohexene preferentially react via a retro-Diels-Alder pathway leading to ring opening and molecular weight reduction. 3-methyl-1-cyclohexene, which exhibits much higher yield sooting index, preferentially reacts via dehydrogenation to cyclohexadienes and toluene - consistent with higher soot formation. It was demonstrated that the relative stability of the first radical intermediate plays a considerable role in determining the branching ratio between formation of soot precursors and ring opened retro-Diels-Alder reaction products. This study underscores the importance that small structural features can have in determining the ultimate fate of carbon during combustion processes.
Original language | American English |
---|---|
Pages (from-to) | 1083-1090 |
Number of pages | 8 |
Journal | Proceedings of the Combustion Institute |
Volume | 37 |
Issue number | 1 |
DOIs | |
State | Published - 2019 |
NREL Publication Number
- NREL/JA-5100-71629
Keywords
- DFT
- Flow reactor
- Methylcyclohexene
- Particulate matter
- Soot