Experimental Trials of Species-Specific Bat Flight Responses to an Ultrasonic Deterrent: Article No. e16718

Sarah Fritts, Emma Guest, Sara Weaver, Amanda Hale, Brogan Morton, Cris Hein

Research output: Contribution to journalArticlepeer-review

Abstract

Unintended consequences of increasing wind energy production include bat mortalities from wind turbine blade strikes. Ultrasonic deterrents (UDs) have been developed to reduce bat mortalities at wind turbines. Our goal was to experimentally assess the species-specific effectiveness of three emission treatments from the UD developed by NRG Systems. We conducted trials in a flight cage measuring approximately 60 m x 10 m x 4.4 m (length x width x height) from July 2020 to May 2021 in San Marcos, Texas, USA. A single UD was placed at either end of the flight cage, and we randomly selected one for each night of field trials. Trials focused on a red bat species group (Lasiurus borealis and Lasiurus blossevillii; n = 46) and four species: cave myotis (Myotis velifer; n = 57), Brazilian free-tailed bats (Tadarida brasiliensis; n = 73), evening bats (Nycteceius humeralis; n = 53), and tricolored bats (Perimyotis subflavus; n = 17). The trials occurred during three treatment emissions: low (emissions from subarrays at 20, 26, and 32 kHz), high (emissions from subarrays at 38, 44, and 50 kHz), and combined (all six emission frequencies). We placed one wild-captured bat into the flight cage for each trial, which consisted of an acclimation period, a control period with the UD powered off, and the three emission treatments (order randomly selected), each interspersed with a control period. We tracked bat flight using four thermal cameras placed outside the flight cage. We quantified the effectiveness of each treatment by comparing the distances each bat flew from the UD during each treatment vs. the control period using quantile regression. Additionally, we conducted an exploratory analysis of differences between sex and season and sex within season using analysis of variance. Broadly, UDs were effective at altering the bats' flight paths as they flew farther from the UD during treatments than during controls; however, results varied by species, sex, season, and sex within season. For the red bat group, bats flew farther from the UD during all treatments than during the control period at all percentiles (p < 0.001), and treatments were comparable in effectiveness. For cave myotis, all percentile distances were farther from the UD during each of the treatments than during the control, except the 90th percentile distance during high, and low was most effective. For evening bats and Brazilian free-tailed bats, results were inconsistent, but high and low were most effective, respectively. For tricolored bats, combined and low were significant at the 10th-75th percentiles, high was significant at all percentiles, and combined was most effective. Results suggest UDs may be an effective means of reducing bat mortalities due to wind turbine blade strikes. We recommend that continued research on UDs focus on low emission treatments, which have decreased sound attenuation and demonstrated effectiveness across the bat species evaluated in this study.
Original languageAmerican English
Number of pages27
JournalPeerJ
Volume12
DOIs
StatePublished - 2024

NREL Publication Number

  • NREL/JA-5000-85805

Keywords

  • bats
  • chiroptera
  • climate change
  • renewable energy
  • turbine blade
  • ultrasonic deterrents
  • wind energy

Fingerprint

Dive into the research topics of 'Experimental Trials of Species-Specific Bat Flight Responses to an Ultrasonic Deterrent: Article No. e16718'. Together they form a unique fingerprint.

Cite this