Expression of a Heat-Stable NADPH-Dependent Alcohol Dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 Results in Increased Hydroxymethylfurfural Resistance: Article No. 66

Daehwan Chung, Sun-Ki Kim, Joseph Groom, James Elkins, Janet Westpheling

Research output: Contribution to journalArticlepeer-review

15 Scopus Citations

Abstract

Resistance to deconstruction is a major limitation to the use of lignocellulosic biomass as a substrate for the production of fuels and chemicals. Consolidated bioprocessing (CBP), the use of microbes for the simultaneous hydrolysis of lignocellulose into soluble sugars and fermentation of the resulting sugars to products of interest, is a potential solution to this obstacle. The pretreatment of plant biomass, however, releases compounds that are inhibitory to the growth of microbes used for CBP. Heterologous expression of the Thermoanaerobacter pseudethanolicus 39E bdhA gene, that encodes an alcohol dehydrogenase, in Clostridium thermocellum significantly increased resistance to furan derivatives at concentrations found in acid-pretreated biomass. The mechanism of detoxification of hydroxymethylfurfural was shown to be primarily reduction using NADPH as the cofactor. In addition, we report the construction of new expression vectors for homologous and heterologous expression in C. thermocellum. These vectors use regulatory signals from both C. bescii (the S-layer promoter) and C. thermocellum (the enolase promoter) shown to efficiently drive expression of the BdhA enzyme. Toxic compounds present in lignocellulose hydrolysates that inhibit cell growth and product formation are obstacles to the commercialization of fuels and chemicals from biomass. Expression of genes that reduce the effect of these inhibitors, such as furan derivatives, will serve to enable commercial processes using plant biomass for the production of fuels and chemicals.
Original languageAmerican English
Number of pages9
JournalBiotechnology for Biofuels
Volume10
DOIs
StatePublished - 2017

NREL Publication Number

  • NREL/JA-2700-68259

Keywords

  • 5-hydroxymethyl-2-furfural
  • butanol dehydrogenase
  • clostridium thermocellum
  • consolidated bioprocessing
  • furfural

Fingerprint

Dive into the research topics of 'Expression of a Heat-Stable NADPH-Dependent Alcohol Dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 Results in Increased Hydroxymethylfurfural Resistance: Article No. 66'. Together they form a unique fingerprint.

Cite this