Abstract
A novel approach has been developed to enable the creation of a fully lattice-matched two-terminal four-junction III-V solar cell is which an upper 1.85 eV GaInP/ 1.42 eV GaAs two-junction (2J) tandem cell is bonded to a lower Eg3 eV GaInAsP/ 0.74 GaInAs eV 2J tandem cell. In this configuration, the upper tandem is grown inverted and lattice-matched to a GaAs substrate, and the lower tandem is grown upright and lattice-matched to an InP substrate. Prove of concept devices have been fabricated using Au-Au bonding with either SiO 2 or GaInP2 as a filler material. The bonding process is discussed in this paper as well as the result of an inverted GaAs cell bonded on a conducting GaAs wafer. The most complex device fabricated to date is a GaInP/GaAs 2J tandem cell bonded to a GaInAs cell using a GaInP2 optical coupling layer, with a post-bonding Voc of 2.7 eV.
Original language | American English |
---|---|
Pages | 944-948 |
Number of pages | 5 |
DOIs | |
State | Published - 2012 |
Event | 38th IEEE Photovoltaic Specialists Conference, PVSC 2012 - Austin, TX, United States Duration: 3 Jun 2012 → 8 Jun 2012 |
Conference
Conference | 38th IEEE Photovoltaic Specialists Conference, PVSC 2012 |
---|---|
Country/Territory | United States |
City | Austin, TX |
Period | 3/06/12 → 8/06/12 |
NREL Publication Number
- NREL/CP-5200-57530
Keywords
- device bonding
- III-V multijunction solar cell