Abstract
The [FeFe]-hydrogenase catalytic site H cluster is a complex iron sulfur cofactor that is sensitive to oxygen (O2). The O2 sensitivity is a significant barrier for production of hydrogen as an energy source in water-splitting, oxygenic systems. Oxygen reacts directly with the H cluster, which results in rapid enzyme inactivation and eventual degradation. To investigate the progression of O2-dependent [FeFe]-hydrogenase inactivation and the process of H cluster degradation, the highly O2-sensitive [FeFe]-hydrogenase HydA1 from the green algae Chlamydomonas reinhardtii was exposed to defined concentrations of O2 while monitoring the loss of activity and accompanying changes in H cluster spectroscopic properties. The results indicate that H cluster degradation proceeds through a series of reactions, the extent of which depend on the initial enzyme reduction/oxidation state. The degradation process begins with O2 interacting and reacting with the 2Fe subcluster, leading to degradation of the 2Fe subcluster and leaving an inactive [4Fe-4S] subcluster state. This final inactive degradation product could be reactivated in vitro by incubation with 2Fe subcluster maturation machinery, specifically HydFEG, which was observed by recovery of enzyme activity.
| Original language | American English |
|---|---|
| Pages (from-to) | 1809-1816 |
| Number of pages | 8 |
| Journal | Journal of the American Chemical Society |
| Volume | 137 |
| Issue number | 5 |
| DOIs | |
| State | Published - 2015 |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.
NREL Publication Number
- NREL/JA-2700-62523