Flexible Grid-Based Electrolysis Hydrogen Production for Fuel Cell Vehicles Reduces Costs and Greenhouse Gas Emissions

Cong Zhang, Jeffery Greenblatt, Max Wei, Josh Eichman, Samveg Saxena, Matteo Muratori, Omar Guerra

Research output: Contribution to journalArticlepeer-review

82 Scopus Citations

Abstract

Hydrogen fuel cell electric vehicles (FCEVs) have been proposed as an option for lowering carbon dioxide (CO2) and pollutants emissions from the transportation sector, when implemented in combination with green hydrogen production methods such as water electrolysis powered by renewable electricity. FCEVs also have the added advantages of high specific energy density and rapid refueling, two important challenges that battery electric vehicles have not yet fully overcome. Moreover, flexible operation of electrolysis could support the grid and lower electricity costs. In this paper, we simulate time-varying FCEV hydrogen refueling demand for light, medium- and heavy-duty vehicles met using electrolysis systems distributed throughout the Western U.S. power system. We find that by oversizing electrolyzers the resulting load flexibility results in different hydrogen generation temporal profiles, average electricity costs, renewable curtailment levels, and CO2 emissions. Our results indicate that increasing hydrogen production flexibility lowers hydrogen and electricity generation cost and CO2 emissions, but there is a tradeoff between lowering operational cost and increasing electrolyzer capital cost, yielding a minimum total system cost at a size corresponding to between 80% and 90% annual capacity factor assuming a future electrolyzer cost of $300/kW.

Original languageAmerican English
Article number115651
Number of pages11
JournalApplied Energy
Volume278
DOIs
StatePublished - 2020

Bibliographical note

Publisher Copyright:
© 2020

NREL Publication Number

  • NREL/JA-5400-75772

Keywords

  • Electricity
  • Electricity production cost model
  • Electrolysis
  • Hydrogen fuel cell vehicles
  • Medium- and heavy-duty transportation
  • Power system optimization

Fingerprint

Dive into the research topics of 'Flexible Grid-Based Electrolysis Hydrogen Production for Fuel Cell Vehicles Reduces Costs and Greenhouse Gas Emissions'. Together they form a unique fingerprint.

Cite this