Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports

Helen Correll, Noemi Leick, Rachel Mow, Glory Russell-Parks, Simon Pang, Thomas Gennett, Wade Braunecker

Research output: Contribution to journalArticlepeer-review

5 Scopus Citations

Abstract

Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis(4-hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (-100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.

Original languageAmerican English
Pages (from-to)10419-10428
Number of pages10
JournalJournal of Physical Chemistry C
Volume126
Issue number25
DOIs
StatePublished - 30 Jun 2022

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

NREL Publication Number

  • NREL/JA-5900-82127

Keywords

  • carbon capture
  • DAC
  • direct air capture
  • fluorescence

Fingerprint

Dive into the research topics of 'Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports'. Together they form a unique fingerprint.

Cite this