Abstract
Metal halide perovskite solar cells (PSCs) have risen in efficiency from just 3.81% in 2009 to over 25.2% today. While metal halide perovskites have excelled in efficiency, advances in stability are significantly more complex and have progressed more slowly. The advance of efficiency, which is readily measured, over stability, which can require literally thousands of hours to demonstrate, is to be expected given the rapid rate of innovation in the field. In the face of changing absorber composition, synthetic approaches, and device stack components it is necessary to understand basic material properties to rationalize how to enable stability in devices. In this article the aim is to present an in-depth review of the current understanding of metal halide perovskite devices and module stability by focusing on what is known retarding intrinsic and extrinsic degradation mechanisms at the material, device, and module level. Once these considerations are presented the discussion then moves to connecting different degradation mechanisms to stresses anticipated in operation and how they can impact efficiency of cells and ultimately modules over time.
Original language | American English |
---|---|
Article number | 1904054 |
Number of pages | 35 |
Journal | Advanced Energy Materials |
Volume | 10 |
Issue number | 26 |
DOIs | |
State | Published - 2020 |
Bibliographical note
Publisher Copyright:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The publisher acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes only.
NREL Publication Number
- NREL/JA-5K00-75929
Keywords
- perovskite defects
- perovskite degradations
- perovskite stabilities
- perovskites
- review