Abstract
Acoustic spalling presents a potentially low-cost reuse pathway for III-V epitaxial growth substrates via exfoliation of device layers with recovery and reuse of the substrate. However, surface features formed during spalling can reduce the performance of subsequently grown devices. We develop an understanding of how the surface morphology of acoustically spalled substrates affects GaAs solar cell performance and develop strategies to mitigate these impacts. We demonstrate that minor planarization of the surface by wet chemical etching and/or epitaxial growth, or the redesign of the device structure to thicken critical layers, prevents performance degradation. Using these strategies, we demonstrate a 0.25 cm2 single-junction GaAs device with 26.9% +/- 0.2% photovoltaic conversion efficiency under the AM1.5G spectrum grown on an acoustically spalled substrate. These results enable the growth of high-performance III-V devices on non-traditional substrates with the potential for significantly reduced device costs.
Original language | American English |
---|---|
Pages (from-to) | 1529-1542 |
Number of pages | 14 |
Journal | Joule |
Volume | 7 |
Issue number | 7 |
DOIs | |
State | Published - 2023 |
NREL Publication Number
- NREL/JA-5900-84704
Keywords
- GaAs
- III-V
- OMVPE
- organometallic vapor phase epitaxy
- photovoltaic
- PV
- shunt defects
- solar cell
- sonic wafering