TY - JOUR
T1 - Geometric Tuning of Coordinatively Unsaturated Copper(I) Sites in Metal-Organic Frameworks for Ambient-Temperature Hydrogen Storage
AU - Yabuuchi, Yuto
AU - Furukawa, Hiroyasu
AU - Carsch, Kurtis
AU - Klein, Ryan
AU - Tkachenko, Nikolay
AU - Huang, Adrian
AU - Cheng, Yongqiang
AU - Taddei, Keith
AU - Novak, Eric
AU - Brown, Craig
AU - Head-Gordon, Martin
AU - Long, Jeffrey
PY - 2024
Y1 - 2024
N2 - Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to pi-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the pi-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 A), -27 kJ/mol for M = MnII (0.83 A), and -23 kJ/mol for M = CdII (0.95 A). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the pi-backbonding to H2.
AB - Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to pi-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the pi-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 A), -27 kJ/mol for M = MnII (0.83 A), and -23 kJ/mol for M = CdII (0.95 A). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the pi-backbonding to H2.
KW - hydrogen storage
KW - inelastic neutron scattering
KW - metal-organic framework
KW - neutron diffraction
U2 - 10.1021/jacs.4c08039
DO - 10.1021/jacs.4c08039
M3 - Article
SN - 0002-7863
VL - 146
SP - 22759
EP - 22776
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 32
ER -