Abstract
This study presents an interfacial modification strategy to improve the performance of electrochromic films that were fabricated by a magnetron sputtering technique. High-quality graphene sheets, synthesized by chemical vapor deposition, were used to modify fluorine-doped tin oxide substrates, followed by the deposition of high-performance nanocomposite nickel oxide electrochromic films. Electrochromic cycling results revealed that a near-complete monolayer graphene interfacial layer improves the electrochromic performance in terms of switching kinetics, activation period, coloration efficiency, and bleached-state transparency, while maintaining ∼100% charge reversibility. The present study offers an alternative route for improving the interfacial properties between electrochromic and transparent conducting oxide films without relying on conventional methods such as nanostructuring or thin film composition control.
Original language | American English |
---|---|
Pages (from-to) | 11330-11336 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 7 |
Issue number | 21 |
DOIs | |
State | Published - 2015 |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.
NREL Publication Number
- NREL/JA-5900-63851
Keywords
- electrochromic
- graphene
- interfaces
- lithium intercalation
- nickel oxide