Abstract
In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of~2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to theCdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can begreatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.
Original language | American English |
---|---|
Number of pages | 7 |
State | Published - 2002 |
Event | 29th IEEE PV Specialists Conference - New Orleans, Louisiana Duration: 20 May 2002 → 24 May 2002 |
Conference
Conference | 29th IEEE PV Specialists Conference |
---|---|
City | New Orleans, Louisiana |
Period | 20/05/02 → 24/05/02 |
Bibliographical note
Prepared for the 29th IEEE PV Specialists Conference, 20-24 May; 2002, New Orleans, LouisianaNREL Publication Number
- NREL/CP-520-31429
Keywords
- atomic force microscopy (AFM)
- cadmium telluride (CdTe) photovoltaic solar cells modules
- high-efficiency polycrystalline
- oxygenated amorphous cds
- photoemission spectroscopy (XPS)
- PV
- raman spectra
- short-wavelength region
- solar cells
- thin film
- X-ray diffraction