Abstract
We studied the processing of crystalline-silicon solar cells using a 10-kW, high-flux solar furnace (HFSF). Major findings of this study include: (1) hydrogenated amorphous silicon films deposited on glass substrates can be converted to microcrystalline silicon by solid-phase crystallization in 5 seconds or less in the HFSF; (2) the presence of concentrated sunlight enhances the diffusion ofphosphorus into silicon from a spin-on dopant source; (3) the combination of a porous-silicon surface layer and photo-enhanced impurity diffusion is very effective in gettering impurities from a metallurgical-grade silicon wafer or thin-layer silicon deposited using liquid-phase epitaxy; (4) a 14.1%-efficient crystalline-silicon solar cell with an area of 4.6 cm2 was fabricated using the HFSFfor simultaneous diffusion of front n+-p and back-p+ junctions; and (5) we have shown that the HFSF can be used to texture crystalline-silicon surfaces and anneal metal contacts printed on a silicon solar cell.
Original language | American English |
---|---|
Pages | 751-757 |
Number of pages | 7 |
State | Published - 1997 |
Event | NREL/SNL Photovoltaics Program Review: 14th Conference - Lakewood, Colorado Duration: 18 Nov 1996 → 22 Nov 1996 |
Conference
Conference | NREL/SNL Photovoltaics Program Review: 14th Conference |
---|---|
City | Lakewood, Colorado |
Period | 18/11/96 → 22/11/96 |
NREL Publication Number
- NREL/CP-450-22224