Abstract
A high bulk minority-carrier lifetime in GaAs grown on Si-based substrates is demonstrated. This was achieved by utilizing a step-graded Ge/GeSi buffer (threading dislocation density 2×106 cm-2) grown on an offcut (001) Si wafer, coupled with monolayer-scale control of the GaAs nucleation to suppress antiphase domains. Bulk minority-carrier lifetimes (τp) were measured using room-temperature time-resolved photoluminescence applied to a series of Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As double-heterojunction structures doped n=1.1×1017 cm-3 with GaAs thicknesses of 0.5, 1.0, and 1.5 μm. A lifetime τp=7.7 ns was determined for GaAs grown on Si. The extracted interface recombination velocity of 3.9×103 cm/s is comparable to recombination velocities found for Al0.3Ga0.7As/GaAs interfaces grown on both GaAs and Ge wafers, indicating that the crosshatch surface morphology characteristic of strain-relaxed Ge/GeSi surfaces does not impede the formation of high-electronic-quality interfaces. These results hold great promise for future integration of III-V minority-carrier devices with Si wafer technologies.
Original language | American English |
---|---|
Pages (from-to) | 3111-3113 |
Number of pages | 3 |
Journal | Applied Physics Letters |
Volume | 73 |
Issue number | 21 |
DOIs | |
State | Published - 1998 |
NREL Publication Number
- NREL/JA-520-26203