Abstract
Hot electron cooling in variously structured and doped quantum wells and superlattices has been studied by low temperature steady-state photoluminescence. A parabolic quantum well realized by thickness grading of Al0.3Ga0.7As and GaAs epitaxial layers deposited by molecular beam epitaxy with electron level spacings of ∼25 meV did not show increased electron plasma temperatures compared to thick epitaxially deposited GaAs or square quantum wells with electron level spacings greater than the LO phonon energy of GaAs; this implies that mechanisms involving intersubband Δk ≠ 0 transitions and interfacial recombination are dominant in the parabolic structure. Investigations as a function of carrier concentration in modulation-doped quantum wells and n-type superlattices with strong miniband formation indicate that increasing the carrier concentration in either structure above ∼ 5 × 1017 cm-3 significantly increases the electron plasma temperatures, even under low light excitation, suggesting that such structures may be suited for high efficiency hot electron photovoltaic and photoelectrochemical cells.
| Original language | American English |
|---|---|
| Pages (from-to) | 459-468 |
| Number of pages | 10 |
| Journal | Superlattices and Microstructures |
| Volume | 13 |
| Issue number | 4 |
| DOIs | |
| State | Published - 1993 |
NREL Publication Number
- NREL/JA-451-5642