How Reliable is Distribution of Relaxation Times (DRT) Analysis? A Dual Regression-Classification Perspective on DRT Estimation, Interpretation, and Accuracy

Jake Huang, Neal Sullivan, Andriy Zakutayev, Ryan O'Hayre

Research output: Contribution to journalArticlepeer-review

21 Scopus Citations

Abstract

The distribution of relaxation times (DRT) has gained increasing attention and adoption in recent years as a versatile method for analyzing electrochemical impedance spectroscopy (EIS) data obtained from complex devices like fuel cells, electrolyzers, and batteries. The DRT deconvolutes the impedance without a priori specification of a generative model, which is especially useful for interpretation and model selection when the governing principles of the system under study are not fully understood. However, DRT estimation is an ill-posed inversion problem that must be addressed with a subjective choice of regularization and tuning, which leaves substantial risk of misleading interpretations of EIS data. In this work, we suggest a new classification view of the DRT inversion to clarify DRT estimation and interpretation. We introduce a dual regression-classification framework that unifies the classification and regression views of the DRT inversion with wide-reaching implications for DRT analysis. The dual framework is employed to demonstrate a new kind of DRT inversion algorithm and develop novel evaluation metrics that capture previously ignored aspects of DRT accuracy. These approaches are applied to both synthetic data and experimental spectra collected from a protonic ceramic fuel cell and a lithium-ion battery to illustrate their broad utility. The dual inversion algorithm shows promising performance for accurate DRT estimation and autonomous model identification, while the dual evaluation approach produces metrics that meaningfully assess the strengths and risks of DRT algorithms. This work provides valuable insight for both practical application of the DRT to experimental data and further development of EIS analysis methods.

Original languageAmerican English
Article number141879
Number of pages17
JournalElectrochimica Acta
Volume443
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

NREL Publication Number

  • NREL/JA-5K00-84965

Keywords

  • Autonomous
  • Classification
  • Distribution of relaxation times
  • Electrochemical impedance spectroscopy
  • Equivalent circuit

Fingerprint

Dive into the research topics of 'How Reliable is Distribution of Relaxation Times (DRT) Analysis? A Dual Regression-Classification Perspective on DRT Estimation, Interpretation, and Accuracy'. Together they form a unique fingerprint.

Cite this