Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts

Guido Zichittella, Amani Ebrahim, Jie Zhu, Anna Brenner, Griffin Drake, Gregg Beckham, Simon Bare, Julie Rorrer, Yuriy Roman-Leshkov

Research output: Contribution to journalArticlepeer-review

49 Scopus Citations

Abstract

The development of technologies to recycle polyethylene (PE) and polypropylene (PP), globally the two most produced polymers, is critical to increase plastic circularity. Here, we show that 5 wt % cobalt supported on ZSM-5 zeolite catalyzes the solvent-free hydrogenolysis of PE and PP into propane with weight-based selectivity in the gas phase over 80 wt % after 20 h at 523 K and 40 bar H2. This catalyst significantly reduces the formation of undesired CH4 (≤5 wt %), a product which is favored when using bulk cobalt oxide or cobalt nanoparticles supported on other carriers (selectivity ≤95 wt %). The superior performance of Co/ZSM-5 is attributed to the stabilization of dispersed oxidic cobalt nanoparticles by the zeolite support, preventing further reduction to metallic species that appear to catalyze CH4 generation. While ZSM-5 is also active for propane formation at 523 K, the presence of Co promotes stability and selectivity. After optimizing the metal loading, it was demonstrated that 10 wt % Co/ZSM-5 can selectively catalyze the hydrogenolysis of low-density PE (LDPE), mixtures of LDPE and PP, as well as postconsumer PE, showcasing the effectiveness of this technology to upcycle realistic plastic waste. Cobalt supported on zeolites FAU, MOR, and BEA were also effective catalysts for C2-C4 hydrocarbon formation and revealed that the framework topology provides a handle to tune gas-phase selectivity.

Original languageAmerican English
Pages (from-to)2259-2268
Number of pages10
JournalJACS Au
Volume2
Issue number10
DOIs
StatePublished - 24 Oct 2022

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society.

NREL Publication Number

  • NREL/JA-2800-83099

Keywords

  • chemical recycling
  • cobalt
  • plastic circularity
  • polyolefin waste
  • propane
  • selective hydrogenolysis
  • ZSM-5

Fingerprint

Dive into the research topics of 'Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts'. Together they form a unique fingerprint.

Cite this