Abstract
Grid integration of photovoltaic (PV) inverters has been increasing in the past decade. Due to the uncertainties introduced with this high penetration, better monitoring and control of the assets becomes crucial for the system stability. Multiple standards are available to enable interoperability in PV inverters. In this paper, an interoperable controller, enabled by DNP3 communications protocols, is developed for a grid-connected, three-phase PV inverter. Advanced inverter control function setpoints like VVAR curves, ride-through curves are sent from a data management system application to the PV inverter through DNP3. The DNP3 server for the PV inverter is programmed on the real-time layer of the inverter controller. A controller hardware-in-the-loop experimental setup is used to validate the developed communications capability of the PV inverter. This work will enable grid integration of smart PV inverters with advanced grid-support functions as well as allow better monitoring and control of assets for grid stability.
Original language | American English |
---|---|
Number of pages | 9 |
State | Published - 2019 |
Event | 46th IEEE Photovoltaic Specialists Conference (PVSC 46) - Chicago, Illinois Duration: 16 Jun 2019 → 21 Jun 2019 |
Conference
Conference | 46th IEEE Photovoltaic Specialists Conference (PVSC 46) |
---|---|
City | Chicago, Illinois |
Period | 16/06/19 → 21/06/19 |
Bibliographical note
See NREL/CP-5D00-76331 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5D00-73131
Keywords
- advanced grid-support functions
- distributed network protocol
- DNP3
- interoperability
- photovoltaics
- PV inverter