Impact of Grain Boundaries on Efficiency and Stability of Organic-Inorganic Trihalide Perovskites

Zhaodong Chu, Mengjin Yang, Philip Schulz, Di Wu, Xin Ma, Edward Seifert, Liuyang Sun, Xiaoqin Li, Kai Zhu, Keji Lai

Research output: Contribution to journalArticlepeer-review

219 Scopus Citations


Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk properties such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. Our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.

Original languageAmerican English
Article number2230
Number of pages8
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2017

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

NREL Publication Number

  • NREL/JA-5900-68285


  • electronic materials
  • electronic properties
  • organic-inorganic nanostructures
  • solar cells


Dive into the research topics of 'Impact of Grain Boundaries on Efficiency and Stability of Organic-Inorganic Trihalide Perovskites'. Together they form a unique fingerprint.

Cite this