Abstract
In this work, we studied the impact of using Zn1-xMg xO to replace the intrinsic ZnO in CIGS solar cells. The effect of Mg content and layer thickness of the Zn1-xMgxO on device formation was investigated. We found that the amount of Mg in the Zn 1-xMgxO layer and the layer thickness significantly alter the cell properties. Device characterization indicated that the impact of the Mg content is not limited to the front-window layer, but also extends to underneath the CIGS layer. The numerical simulation nicely explains the relationship between various front-window layers and device performance. Our observation indicates that properties of the front-window layer may be important to junction formation in CIGS devices. Any changes to this part of the device could seriously alter device performance.
Original language | American English |
---|---|
Pages | 305-308 |
Number of pages | 4 |
DOIs | |
State | Published - 2009 |
Event | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States Duration: 7 Jun 2009 → 12 Jun 2009 |
Conference
Conference | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 |
---|---|
Country/Territory | United States |
City | Philadelphia, PA |
Period | 7/06/09 → 12/06/09 |
NREL Publication Number
- NREL/CP-520-46112
Keywords
- CIGS solar cell
- Conduction-band offset
- ZnMgO