Abstract
In this paper, we present an update and review on the progress made in the development of low-bandgap CuInSe2 (CIS) and wide-bandgap CuGaSe2 (CGS) solar cells. Our research project is primarily concerned with the optimization of the bottom and top cells of the tandem solar cell. This past year, we achieved new world record total-area efficiencies of 15.0% and 10.2% for CIS and surface-modifiedCGS solar cells, respectively. These achievements were possible by modifying the growth process for CIS and CGS absorbers. We attempt to modify the surface region of the CGS absorber to be CIGS-like in composition. In the mean time, we are designing a mechanical-stacked tandem solar cell where the CIS cell serves as the bottom cell.
Original language | American English |
---|---|
Number of pages | 5 |
State | Published - 2005 |
Event | 2004 DOE Solar Energy Technologies Program Review Meeting - Denver, Colorado Duration: 25 Oct 2004 → 28 Oct 2004 |
Conference
Conference | 2004 DOE Solar Energy Technologies Program Review Meeting |
---|---|
City | Denver, Colorado |
Period | 25/10/04 → 28/10/04 |
Bibliographical note
Presented at the 2004 DOE Solar Energy Technologies Program Review Meeting, 25-28 October 2004, Denver, Colorado. Also included in the proceedings available on CD-ROM (DOE/GO-102005-2067; NREL/CD-520-37140)NREL Publication Number
- NREL/CP-520-37614
Keywords
- low-bandgap
- PV
- quantum efficiency (QE)
- solar cells
- surface-modified
- tandem
- wide band gap