Abstract
Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.
Original language | American English |
---|---|
Number of pages | 5 |
DOIs | |
State | Published - 17 Nov 2016 |
Event | 48th North American Power Symposium, NAPS 2016 - Denver, United States Duration: 18 Sep 2016 → 20 Sep 2016 |
Conference
Conference | 48th North American Power Symposium, NAPS 2016 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 18/09/16 → 20/09/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
NREL Publication Number
- NREL/CP-5D00-66559
Keywords
- advanced inverter control
- distribution system simulator
- smart grids
- volt-var
- volt-watt