Improving Biomass Pyrolysis Economics by Integrating Vapor and Liquid Phase Upgrading

Mark Nimlos, Abhijit Dutta, Maarit Iisa, Robert Baldwin, Calvin Mukarakate, Seon Ah Kim, David Robichaud, Michael Watson, Jeroen Dam

Research output: Contribution to journalArticlepeer-review

57 Scopus Citations


Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalytic fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon-carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. Finally, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.

Original languageAmerican English
Pages (from-to)567-582
Number of pages16
JournalGreen Chemistry
Issue number3
StatePublished - 2018

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry.

NREL Publication Number

  • NREL/JA-5100-68346


  • catalytic fast pyrolysis
  • liquid phase upgrading
  • vapor phase upgrading


Dive into the research topics of 'Improving Biomass Pyrolysis Economics by Integrating Vapor and Liquid Phase Upgrading'. Together they form a unique fingerprint.

Cite this