Abstract
Reduced-dimensional hybrid perovskite semiconductors have recently attracted significant attention due to their promising stability and optoelectronic properties. However, the issue of poor charge transport in 2D perovskites limits its application. Here, studies on intermediate-controlled crystal growth are reported to improve charge carrier transport in 2D perovskite thin films. It is shown that the coordination strength of solvents with perovskite precursor affects the initial state of intermediate phase formation as well as the subsequent perovskite layer growth. Tuning the solvent composition with a mixture (5:5) of dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) leads to the growth of highly orientated 2D perovskite films with much-improved optoelectronic properties (faster transport by ≈50x, longer carrier lifetime by ≈4x, and lower defect density by ≈30x) than the film prepared with pure DMF. Consequently, perovskite solar cells based on DMF/DMSO (5:5) show >80% efficiency improvement than the devices based on pure DMF.
Original language | American English |
---|---|
Article number | 1901652 |
Number of pages | 7 |
Journal | Advanced Functional Materials |
Volume | 29 |
Issue number | 47 |
DOIs | |
State | Published - 2019 |
Bibliographical note
Publisher Copyright:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
NREL Publication Number
- NREL/JA-5900-73170
Keywords
- 2D perovskite
- defect density
- microwave conductivity
- solvent
- transport