Abstract
This study experimentally examines the effect of nitrogen doping on the activity of Pt/C catalyst systems. The investigation was accomplished through the development of geometrically well-defined model catalytic systems consisting of tunable assemblies of Pt catalyst nanoparticles deposited onto both N-doped and undoped highly-oriented pyrolytic graphite (HOPG) substrates. N-doping was achieved via ion beam implantation, and Pt was electrodeposited from solutions of H2PtCl6 in aqueous HClO4. Morphology from scanning electron microscopy (SEM) and catalytic activity measurement from aqueous electrochemical analysis were utilized to examine the N-doping effects. The results strongly support the theory that doping nitrogen into a graphite support significantly affects both the morphology and behavior of the overlying Pt nanoparticles. In particular, nitrogen-doping was observed to cause a significant decrease in the average Pt nanoparticle size, an increase in the Pt nanoparticle dispersion, and a significant increase in catalytic activity for both methanol oxidation and oxygen reduction.
Original language | American English |
---|---|
Pages | 69-77 |
Number of pages | 9 |
DOIs | |
State | Published - 2008 |
Event | ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2008 - Denver, United States Duration: 16 Jun 2008 → 18 Jun 2008 |
Conference
Conference | ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2008 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 16/06/08 → 18/06/08 |
Bibliographical note
Publisher Copyright:© 2022 by ASME.
NREL Publication Number
- NREL/CP-520-48855
Keywords
- doping
- electrocatalysis
- fuel cell
- methanol
- nitrogen