Abstract
In this paper, we propose a two-stage electricity market framework to explore the participation of distributed energy resources (DERs) in a day-ahead (DA) market and a real-time (RT) market. The objective is to determine the optimal bidding strategies of the aggregated DERs in the DA market and generate online incentive signals for DER-owners to optimize the social-welfare taking into account network operational constraints. Distributionally robust optimization is used to explicitly incorporate data-based statistical information of renewable forecasts into the supply/demand decisions in the DA market. We evaluate the conservativeness of bidding strategies distinguished by different risk aversion settings. In the RT market, a bi-level time-varying optimization problem is proposed to design the online incentive signals to tradeoff the RT imbalance penalty for distribution system operators (DSOs) and the costs of individual DER-owners. This enables tracking their optimal dispatch to provide fast balancing services, in the presence of time-varying network states while satisfying the voltage regulation requirement. Simulation results on both DA wholesale market and RT balancing market demonstrate the necessity of this two-stage design, and its robustness to uncertainties, the performance of convergence, the tracking ability and the feasibility of the resulting network operations.
Original language | American English |
---|---|
Number of pages | 14 |
Journal | Applied Energy |
Volume | 332 |
DOIs | |
State | Published - 2023 |
NREL Publication Number
- NREL/JA-5D00-84942
Keywords
- distribution networks
- electricity market mechanism
- online optimization
- power systems
- stochastic optimization