Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis

Research output: Contribution to journalArticlepeer-review

74 Scopus Citations

Abstract

Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.

Original languageAmerican English
Pages (from-to)4662-4674
Number of pages13
JournalACS Sustainable Chemistry and Engineering
Volume4
Issue number9
DOIs
StatePublished - 6 Sep 2016

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

NREL Publication Number

  • NREL/JA-5100-66920

Keywords

  • Allomorph
  • Biochar
  • Biomass conversion
  • Cellulose
  • Crystallinity
  • Pyrolysis

Fingerprint

Dive into the research topics of 'Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis'. Together they form a unique fingerprint.

Cite this