Abstract
We describe results of our theoretical and experimental studies performed to investigate the influence of defects and defect distributions in multicrystalline silicon (mc-Si) wafers on the solar cell's performance. Dislocation distributions were measured on wafers from various bricks of a mc-Si ingot. Solar cells were fabricated on sister wafers and characterized by a variety of methods. Cell performance can be accurately predicted from dislocation distribution of a mc-Si wafer using local N/P junction characteristics in a distributed network model. This analysis is applied to investigate changes in cell performance caused by dislocation propagation within a brick of mc-Si ingot. The theoretical results agree well with the measured performance of cells fabricated on wafers taken from different places in a brick.
Original language | American English |
---|---|
Pages | 2233-2237 |
Number of pages | 5 |
DOIs | |
State | Published - 2010 |
Event | 35th IEEE Photovoltaic Specialists Conference, PVSC 2010 - Honolulu, HI, United States Duration: 20 Jun 2010 → 25 Jun 2010 |
Conference
Conference | 35th IEEE Photovoltaic Specialists Conference, PVSC 2010 |
---|---|
Country/Territory | United States |
City | Honolulu, HI |
Period | 20/06/10 → 25/06/10 |
NREL Publication Number
- NREL/CP-520-47729
Keywords
- cell efficiency
- defect distribution
- device performance
- solar cells