Abstract
Using direct-write approaches in photovoltaics for metallization and contact formation can significantly reduce the cost per watt of producing photovoltaic devices. Inks have been developed for various materials, such as Ag, Cu, Ni and Al, which can be used to inkjet print metallizations for various kinds of photovoltaic devices. Use of these inks results in metallization with resistivity close to those of bulk materials. By means of inkjet printing a metallization grid can be printed with better resolution, i.e. smaller lines, than screen-printing. For metallization on top of silicon photovoltaics also an ink has been developed that will facilitate the burn-through of the contact through the anti-reflection coating. Using this burn-through material may reduce the firing temperature by more than 100°C compared to conventional contact technology.
Original language | American English |
---|---|
Pages | 1736-1738 |
Number of pages | 3 |
DOIs | |
State | Published - 2009 |
Event | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States Duration: 7 Jun 2009 → 12 Jun 2009 |
Conference
Conference | 2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 |
---|---|
Country/Territory | United States |
City | Philadelphia, PA |
Period | 7/06/09 → 12/06/09 |
NREL Publication Number
- NREL/CP-520-45920
Keywords
- coatings
- conductivity
- costs
- firing
- ink
- inorganic materials
- metallization
- photovoltaic cells
- printing
- silicon