Abstract
This paper develops an integrated synchronization control technique for a grid-forming inverter operating within a microgrid that can improve the microgrid's transients during microgrid transition operation. This integrated synchronization control includes the disconnection synchronization control and the reconnection synchronization control. The simulation results show that the developed synchronization control works effectively to smooth the angle change of the grid-forming inverter during microgrid transition operation. Thus, the microgrid's transients are significantly improved compared to the case without synchronization control.
Original language | American English |
---|---|
Number of pages | 8 |
State | Published - 2019 |
Event | 2019 IEEE Power and Energy Society General Meeting (IEEE PES GM) - Atlanta, Georgia Duration: 4 Aug 2019 → 8 Aug 2019 |
Conference
Conference | 2019 IEEE Power and Energy Society General Meeting (IEEE PES GM) |
---|---|
City | Atlanta, Georgia |
Period | 4/08/19 → 8/08/19 |
Bibliographical note
See NREL/CP-5D00-76221 for paper as published in IEEE proceedingsNREL Publication Number
- NREL/CP-5D00-72756
Keywords
- disconnection synchronization control
- integrated synchronization control
- microgrid transition operation
- reconnection synchronization control