Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

Research output: Contribution to conferencePaper

Abstract

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distributioncircuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order toinvestigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power productionand low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impactmitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PVinverter implementing a limited set of advanced inverter functions.
Original languageAmerican English
Number of pages7
StatePublished - 2012
Event2012 IEEE Photovoltaic Specialists Conference - Austin, Texas
Duration: 3 Jun 20128 Jun 2012

Conference

Conference2012 IEEE Photovoltaic Specialists Conference
CityAustin, Texas
Period3/06/128/06/12

NREL Publication Number

  • NREL/CP-5500-54131

Keywords

  • distribution systems
  • high-penetration PV integration
  • PHIL
  • power hardware-in-the-loop testing
  • PV impact

Fingerprint

Dive into the research topics of 'Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint'. Together they form a unique fingerprint.

Cite this